Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina
نویسندگان
چکیده
BACKGROUND Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by coupling with the downstream intracellular signaling, A(2A)R may have a great capacity to modulate patterned spontaneous activity during neural circuit refinement.
منابع مشابه
Dynamics of Retinal Waves Are Controlled by Cyclic AMP
Waves of spontaneous activity sweep across the developing mammalian retina and influence the pattern of central connections made by ganglion cell axons. These waves are driven by synaptic input from amacrine cells. We show that cholinergic synaptic transmission during waves is not blocked by TTX, indicating that release from starburst amacrine cells is independent of sodium action potentials. T...
متن کاملSynaptotagmin I Regulates Patterned Spontaneous Activity in the Developing Rat Retina via Calcium Binding to the C2AB Domains
BACKGROUND In neonatal binocular animals, the developing retina displays patterned spontaneous activity termed retinal waves, which are initiated by a single class of interneurons (starburst amacrine cells, SACs) that release neurotransmitters. Although SACs are shown to regulate wave dynamics, little is known regarding how altering the proteins involved in neurotransmitter release may affect w...
متن کاملDirect participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina.
Spontaneous, rhythmic waves of excitation in the developing mammalian retina play a critical role in the formation of precise neuronal connectivity in the visual system. However, it is not known what circuits in the retina are responsible for the production of these waves. Using patch-clamp recordings in the whole-mount neonatal rabbit retina, this study reports that the displaced starburst ama...
متن کاملThe effects of immune protein CD3ζ development and degeneration of retinal neurons after optic nerve injury
Major histocompatibility complex (MHC) class I molecules and their receptors play fundamental roles in neuronal death during diseases. T-cell receptors (TCR) function as MHCI receptor on T-cells and both MHCI and a key component of TCR, CD3ζ, are expressed by mouse retinal ganglion cells (RGCs) and displaced amacrine cells. Mutation of these molecules compromises the development of RGCs. We inv...
متن کاملRetinal Mosaics: Pattern Formation Driven by Local Interactions between Homotypic Neighbors
Individual types of retinal neurons are distributed across the retina as regular arrays of cells, commonly referred to as “retinal mosaics” (Wässle and Riemann, 1978). This regularity in their patterning is generally assumed to ensure that all locations across the retina are sub-served by every type of retinal neuron, each participating in their own unique way to the local computations carried ...
متن کامل